A new Q-matrix in the eight-vertex model

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2007 J. Phys. A: Math. Theor. 404075
(http://iopscience.iop.org/1751-8121/40/15/002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.108
The article was downloaded on 03/06/2010 at 05:06

Please note that terms and conditions apply.

A new Q-matrix in the eight-vertex model

Klaus Fabricius
Physics Department, University of Wuppertal, 42097 Wuppertal, Germany
E-mail: Fabricius@theorie.physik.uni-wuppertal.de

Received 11 December 2006, in final form 27 February 2007
Published 23 March 2007
Online at stacks.iop.org/JPhysA/40/4075

Abstract

We construct a Q-matrix for the eight-vertex model at roots of unity for crossing parameter $\eta=2 m K / L$ with odd L, a case for which the existing constructions do not work. The new Q-matrix \hat{Q} depends on the spectral parameter v and also on a free parameter t. For $t=0, \hat{Q}$ has the standard properties. For $t \neq 0$, however, it does not commute with the operator S nor with itself for different values of the spectral parameter. We show that the six-vertex limit of $\hat{Q}\left(v, t=\mathrm{i} K^{\prime} / 2\right)$ exists.

PACS number: 75.10.Jm

An essential tool in Baxter's solution of the eight-vertex model [1-4] is the Q-matrix which satisfies the $T Q$ equation

$$
\begin{equation*}
T(v) Q(v)=[\rho h(v-\eta)]^{N} Q(v+2 \eta)+[\rho h(v+\eta)]^{N} Q(v-2 \eta) \tag{1}
\end{equation*}
$$

and commutes with T. Here $T(v)$ is the transfer matrix of the eight-vertex model (A.1). Combined with periodicity properties of $Q(v)$ in the complex v-plane equation (1) leads to the derivation of Bethe's equations and the solution of the model. For generic values of the crossing parameter η the transfer matrix T has a non-degenerate spectrum. For rational values of η / K however this is not the case. This leads to the existence of different Q-matrices which all satisfy equation (1). In [1], Baxter constructs a Q-matrix valid for

$$
\begin{equation*}
2 L \eta=2 m_{1} K+\mathrm{i} m_{2} K^{\prime} \tag{2}
\end{equation*}
$$

with integers m_{1}, m_{2}, L. In [2], Baxter derived a Q-matrix valid for generic values of η. As these Q-matrices are different we distinguish them by writing Q_{72} and Q_{73} respectively for the constructions in [1, 2]. It turned out, however, that Q_{72} has interesting properties beyond its role in equation (1) because of its restriction to rational values of η / K.

In [5], it is conjectured that $Q_{72}(v)$ satisfies the following functional relation.
For N even and $\eta=m_{1} K / L$ where either L even or L and m_{1} odd
$\mathrm{e}^{-N \pi \mathrm{i} v / 2 K} Q_{72}\left(v-\mathrm{i} K^{\prime}\right)=A \sum_{l=0}^{L-1} h^{N}(v-(2 l+1) \eta) \frac{Q_{72}(v)}{Q_{72}(v-2 l \eta) Q_{72}(v-2(l+1) \eta)}$,
A is a normalizing constant matrix independent of v that commutes with Q_{72} and $h(v)=$ $H(v) \Theta(v)$. There is a proof of this conjecture valid for $L=2$ in [6]. This functional relation is important as it allows the conclusion that the dimension of eigenspaces of degenerate eigenvalues of the T-matrix is a power of 2, a result also true in the six-vertex model provided the roots of the Drinfeld polynomial of the loop algebra symmetry are distinct [7].

The reason why the case L odd and m_{1} even is excluded in (3) is that Q_{72} does not exist in this case [5].

The purpose of this paper is to close this gap ${ }^{1}$. We construct for even N a Q-matrix which exists for $\eta=2 m K / L$ for odd L which satisfies the functional relation (3). Beyond that we shall show that for $\eta=2 m K / L$ a more general Q-matrix exists which depends on a free parameter t and which does not commute with R and S where

$$
\begin{equation*}
R=\underbrace{\sigma_{1} \otimes \sigma_{1} \otimes \cdots \otimes \sigma_{1}}_{\text {Nfactors }} \quad S=\underbrace{\sigma_{3} \otimes \sigma_{3} \otimes \cdots \otimes \sigma_{3}}_{\text {N factors }} \tag{4}
\end{equation*}
$$

and not even with itself for different spectral parameters

$$
\left[Q\left(v_{1}, t\right), Q\left(v_{2}, t\right)\right] \neq 0 .
$$

This phenomenon has also been observed by Bazhanov and Stroganov in [8] for their column-to-column transfer matrix $T_{\text {col }}$ which acts like a Q-matrix in the six-vertex model: it satisfies (1) and it commutes with T_{6}. But it does not commute with itself for different arguments.

We use the notation of Baxter's 1972 paper. We denote our new Q-operators by \hat{Q}_{R}, \hat{Q}_{L} and \hat{Q}. They depend on two arguments v and t, e.g. $\hat{Q}_{R}(v, t)$. For brevity we shall write $\hat{Q}_{R}(v)$ instead of $\hat{Q}_{R}(v, 0)$. The symbols Q, Q_{R} etc refer to all types of Q matrices.

The plan of this paper is as follows. In section 1 we describe the various steps in the construction of Q. We first outline in section 1.1 the general method developed by Baxter and his solution leading to Q_{72}. In section 1.2 we present our new \hat{Q}_{R} operator and describe its range of validity. In section 1.3 we introduce the matrix Q_{L} and show in section 1.4 that the famous equation $Q_{L}(u) Q_{R}(v)=Q_{L}(v) Q_{R}(u)$ which Baxter proved for Q_{72} and Q_{73} is also satisfied by $\hat{Q}(v)$. In section 2 we study the quasiperiodicity properties of $Q(v)$ and show that there exists a link between quasiperiodicity of Q_{R} with quasiperiod i K^{\prime} and non-existence of Q_{R}^{-1}. We summarize in section 3 the properties of $\hat{Q}(v)$ and describe in section 4 the exotic properties of $\hat{Q}(v, t)$ for $t \neq 0$.

1. Construction of a Q-matrix for $\eta=2 m K / L$

1.1. Baxter's construction of Q_{72}

The goal is to find a matrix Q_{R} of the form

$$
\begin{equation*}
\left[Q_{R}(v)\right]_{\alpha \mid \beta}=\operatorname{Tr} S_{R}\left(\alpha_{1}, \beta_{1}\right) S_{R}\left(\alpha_{2}, \beta_{2}\right) \cdots S_{R}\left(\alpha_{N}, \beta_{N}\right) \tag{5}
\end{equation*}
$$

where α_{j} and $\beta_{j}= \pm 1$ and $S_{R}(\alpha, \beta)$ is a matrix of size $L \times L$ such that Q_{R} satisfies

$$
\begin{equation*}
T(v) Q_{R}(v)=[\rho h(v-\eta)]^{N} Q_{R}(v+2 \eta)+[\rho h(v+\eta)]^{N} Q_{R}(v-2 \eta) . \tag{6}
\end{equation*}
$$

The Q-matrix occurring in equation (1) is then

$$
\begin{equation*}
Q(v)=Q_{R}(v) Q_{R}^{-1}\left(v_{0}\right) \tag{7}
\end{equation*}
$$

for some constant v_{0}. Therefore, it is necessary that $Q_{R}(v)$ is a regular matrix. The problem to construct a Q_{R} of the form (5) satisfying (6) is posed and solved by Baxter in appendix C

[^0]of [1]. In order to construct a Q_{R}-matrix which is regular for $\eta=m K / L$ for even m and odd L, we shall search for other solutions of Baxter's fundamental equations.

These equations are (see (C10), (C11) in [1])

$$
\begin{align*}
& \left(a p_{n}-b p_{m}\right) S_{R}(+, \beta)_{m, n}+\left(d-c p_{m} p_{n}\right) S_{R}(-, \beta)_{m, n}=0 \tag{8}\\
& \left(c-d p_{m} p_{n}\right) S_{R}(+, \beta)_{m, n}+\left(b p_{n}-a p_{m}\right) S_{R}(-, \beta)_{m, n}=0
\end{align*}
$$

where $\beta=+,-m, n=1, \ldots, L$ and a, b, c, d are defined in (A.2). Equations (8) determine the elements of the local matrices $S_{R}(\alpha, \beta)$ occurring in (5) provided that the determinant of this system of homogeneous linear equations vanishes:

$$
\begin{equation*}
\left(a^{2}+b^{2}-c^{2}-d^{2}\right) p_{m} p_{n}=a b\left(p_{m}^{2}+p n_{n}^{2}\right)-c d\left(1+p_{m}^{2} p_{n}^{2}\right) \tag{9}
\end{equation*}
$$

This determines p_{n} if p_{m} is given. Setting

$$
\begin{equation*}
p_{m}=k^{1 / 2} \operatorname{sn}(u), \tag{10}
\end{equation*}
$$

it follows from (A.3) that

$$
\begin{equation*}
p_{n}=k^{1 / 2} \operatorname{sn}(u \pm 2 \eta) \tag{11}
\end{equation*}
$$

Baxter selected a solution which has non-vanishing diagonal elements $S_{R}(\alpha, \beta)_{0,0}$ and $S_{R}(\alpha, \beta)_{L, L}$. In order to allow $S_{R}(\alpha, \beta)_{m, n}$ to have non-vanishing diagonal elements $S_{R}(\alpha, \beta)_{0,0}$ and $S_{R}(\alpha, \beta)_{L, L}$ equation (9) has to be satisfied for $n=m$. Then

$$
\begin{equation*}
\operatorname{sn}(u)=\operatorname{sn}(u \pm 2 \eta) \tag{12}
\end{equation*}
$$

This fixes the parameter u to become $u=K \pm \eta$ and leads to the restriction to discrete η :

$$
\begin{equation*}
2 L \eta=2 m_{1} K+\mathrm{i} m_{2} K^{\prime} . \tag{13}
\end{equation*}
$$

One obtains from (10) and (11) that

$$
\begin{equation*}
p_{n}=k^{1 / 2} \operatorname{sn}(K+(2 n-1) \eta) \tag{14}
\end{equation*}
$$

and from (8)

$$
\begin{align*}
\mathrm{S}_{R}(\alpha, \beta)(v)_{k, l} & =\delta_{k+1, l} u^{\alpha}(v+K-2 k \eta) \tau_{-k, \beta}+\delta_{k, l+1} u^{\alpha}(v+K+2 l \eta) \tau_{l, \beta} \\
& +\delta_{k, 1} \delta_{l, 1} u^{\alpha}(v+K) \tau_{0, \beta}+\delta_{k, L} \delta_{l, L} u^{\alpha}(v+K+2 L \eta) \tau_{L, \beta} \tag{15}
\end{align*}
$$

for $1<k \leqslant L, 1<l \leqslant L$ and where

$$
\begin{equation*}
u^{+}(v)=\mathrm{H}(v) \quad u^{-}(v)=\Theta(v) \tag{16}
\end{equation*}
$$

if

$$
\begin{equation*}
\eta=m_{1} K / L \tag{17}
\end{equation*}
$$

$Q_{R, 72}$ is the matrix Q_{R} defined in (5) with S_{R} given by (15).
It has been shown in [5] that Q_{R} based on (15) is singular if m_{1} is even and L is odd. In the following subsection we show that an alternative construction leads for these η-values to a regular Q_{R}-matrix.

1.2. Another Q-matrix

To obtain another solution \hat{S}_{R} of (8) and (9) we consider the possibility that the elements of $\hat{S}_{R}(\alpha, \beta)_{m, n}$ form cycles

$$
\hat{S}_{R}(\alpha, \beta)_{1,2}, \hat{S}_{R}(\alpha, \beta)_{2,3}, \ldots, \hat{S}_{R}(\alpha, \beta)_{L-1, L}, \hat{S}_{R}(\alpha, \beta)_{L, 1}
$$

and

$$
\hat{S}_{R}(\alpha, \beta)_{2,1}, \hat{S}_{R}(\alpha, \beta)_{3,2}, \ldots, \hat{S}_{R}(\alpha, \beta)_{L, L-1}, \hat{S}_{R}(\alpha, \beta)_{1, L}
$$

instead of imposing the condition that $\hat{S}_{R}(\alpha, \beta)_{m, n}$ has two diagonal elements. In this case a set of functions p_{n} consistent with (10) and (11) is

$$
\begin{equation*}
p_{n}=k^{1 / 2} \operatorname{sn}(t+(2 n-1) \eta) . \tag{18}
\end{equation*}
$$

From the condition that

$$
\begin{equation*}
\hat{S}_{R}(\alpha, \beta)_{L, L+1}=\hat{S}_{R}(\alpha, \beta)_{L, 1} \tag{19}
\end{equation*}
$$

it follows that p_{1} and p_{L} must have arguments which differ by 2η :

$$
\begin{equation*}
\operatorname{sn}(t+(2 L-1) \eta)=\operatorname{sn}(t+\eta-2 \eta) \tag{20}
\end{equation*}
$$

This is satisfied if

$$
\begin{equation*}
2 L \eta=4 m K+2 \mathrm{i} m_{2} K^{\prime} \tag{21}
\end{equation*}
$$

This condition differs from (13). The solution of equations (8) with the set of p_{n}-functions (18) as input is

$$
\begin{equation*}
\hat{S}_{R}(\alpha, \beta)_{k, l}=\delta_{k+1, l} w^{\alpha}(v-t-2 k \eta) \tau_{\beta,-k}+\delta_{k, l+1} u^{\alpha}(v+t+2 l \eta) \tau_{\beta, l} \tag{22}
\end{equation*}
$$

with u^{α} defined in equation (16) and w^{α} is given by

$$
\begin{equation*}
w^{+}(v)=-\mathrm{H}(v) \quad w^{-}(v)=\Theta(v) \tag{23}
\end{equation*}
$$

Note that the first component of w^{α} differs from u^{+}by a minus sign.
We consider only the case $m_{2}=0$ in (21). Then

$$
\begin{equation*}
\eta=2 m K / L \tag{24}
\end{equation*}
$$

We shall denote the $Q_{R^{-}}, Q_{L^{-}}$and Q-matrices derived from \hat{S}_{R}, \hat{S}_{L} by \hat{Q}_{R}, \hat{Q}_{L} and \hat{Q}. We distinguish the following cases.
(1) If L is odd the resulting \hat{Q}-matrices cover exactly the set of discrete η-values which is missing in the original solution (15)-(16). We note that for $t=K$ this solution becomes identical to case (15)-(16) with singular \hat{Q}_{R}. But for generic t (especially $t=0$) \hat{Q}_{R} is regular. It must be stressed, however, that the regularity has not been proved analytically but numerically for sufficiently large systems to allow the occurrence of degenerate eigenvalues of the transfer matrix T. See also appendix C of $[1,5]$.
(2) L is even but both $L_{1}=L / 2$ and m are odd.

Then $\eta=m K / L_{1}$ is that set of η-values for which solution (15)-(16) leads to regular Q_{R} matrices. It turns out that in this case the \hat{Q}_{R}-matrix resulting from solution (22) is singular.
(3) L and $L / 2$ are even and m is odd.

In this case both solutions (15)-(16) and (22) give regular Q_{R}-matrices. But the matrices $\hat{S}_{R}(\alpha, \beta)$ differ in size by a factor of 2 .
The conclusion is that the two sets of Q-matrices (15)-(16) and (22) are complementary in the sense that for $\eta=m K / L$ and odd L what is missing in the first set is present in the second and vice versa.

1.3. The matrix \hat{Q}_{L}

To get finally a Q-matrix which commutes with the transfer matrix T and satisfies equation (1) Baxter introduced a second matrix Q_{L}. By transposing equation (6) and replacing v by $-v$ one obtains

$$
\begin{equation*}
Q_{L}(v) T(v)=[\rho h(v-\eta)]^{N} Q_{L}(v+2 \eta)+[\rho h(v+\eta)]^{N} Q_{L}(v-2 \eta) \tag{25}
\end{equation*}
$$

with

$$
\begin{equation*}
Q_{L}(v)=Q_{R}^{t}(-v) \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[Q_{L}(v)\right]_{\alpha \mid \beta}=\operatorname{Tr} S_{L}\left(\alpha_{1}, \beta_{1}\right) S_{L}\left(\alpha_{2}, \beta_{2}\right) \cdots S_{L}\left(\alpha_{N}, \beta_{N}\right) \tag{27}
\end{equation*}
$$

We perform this construction for the new \hat{Q}_{R} matrix. The local matrices \hat{S}_{L} are obtained from (22)

$$
\begin{align*}
& \hat{S}_{L}(\alpha, \beta)_{k, l}(v)=\hat{S}_{R}(\beta, \alpha)_{k, l}(-v) \tag{28}\\
& \hat{S}_{L}(\alpha, \beta)_{k, l}=\delta_{k+1, l} \tau_{\alpha,-k} u^{\beta}(v+t+2 k \eta)+\delta_{k, l+1} \tau_{\alpha, l} w^{\beta}(v-t-2 l \eta) \tag{29}
\end{align*}
$$

1.4. The relation $Q_{L}(u) Q_{R}(v)=Q_{L}(v) Q_{R}(u)$

To prove that the Q-matrix defined by

$$
\begin{equation*}
Q(v)=Q_{R}(v) Q_{R}^{-1}\left(v_{0}\right) \tag{30}
\end{equation*}
$$

commutes with the transfer matrix T Baxter shows in [1] that the relation

$$
\begin{equation*}
Q_{L}(v) Q_{R}(u)=Q_{L}(u) Q_{R}(v) \tag{31}
\end{equation*}
$$

holds. Then

$$
\begin{equation*}
Q(v)=Q_{L}^{-1}(u) Q_{L}(v)=Q_{R}(v) Q_{R}^{-1}(u) \tag{32}
\end{equation*}
$$

commutes with $T(v)$. To prove (31) it is shown in [1] that $S_{L}(\alpha, \gamma)_{m, n}(u) S_{R}(\gamma, \beta)_{m^{\prime} n^{\prime}}(v)$ and $S_{L}(\alpha, \gamma)_{m, n}(v) S_{R}(\gamma, \beta)_{m^{\prime} n^{\prime}}(u)$ are related by a similarity transformation:
$S_{L}(\alpha, \gamma)_{m, n}(u) S_{R}(\gamma, \beta)_{m^{\prime} n^{\prime}}(v)=Y_{m, m^{\prime} ; k, k^{\prime}} S_{L}(\alpha, \gamma)_{k, l}(v) S_{R}(\gamma, \beta)_{k^{\prime} l^{\prime}}(u) Y_{l, l^{\prime} ; n, n^{\prime}}^{-1}$,
with diagonal matrix Y,

$$
\begin{equation*}
Y_{m, m^{\prime} ; k, k^{\prime}}=y_{m, m^{\prime}} \delta_{m, k} \delta_{m^{\prime}, k^{\prime}} \tag{34}
\end{equation*}
$$

To investigate whether the matrices \hat{Q}_{R} and \hat{Q}_{L} defined in (5), (22) and (27), (29) fulfil such a relation we define a series of abbreviations. According to (22) we write

$$
\begin{equation*}
\hat{S}_{R}(\alpha, \beta)_{m, n}=\Phi_{m, n}^{\alpha} \bar{\tau}_{m, n}^{\beta} \tag{35}
\end{equation*}
$$

where

$$
\begin{align*}
& \Phi_{m, n}^{\alpha}=\epsilon_{m, n}^{\alpha} f^{\alpha}\left(v_{m, n}\right) \tag{36}\\
& v_{m, n}=\delta_{m-1, n}(v+t+2 n \eta)+\delta_{m+1, n}(v-t-2 m \eta) \tag{37}\\
& \epsilon_{m, n}^{\alpha}=\delta_{m-1, n}-\alpha \delta_{m+1, n} \quad \alpha= \pm 1 \tag{38}\\
& \bar{\tau}_{m, n}^{\beta}=\delta_{m-1, n} \tau_{\beta, n}+\delta_{m+1, n} \tau_{\beta,-m} \tag{39}
\end{align*}
$$

and $f^{+}(v)=H(v), f^{-}(v)=\Theta(v), \delta_{m+L, n}=\delta_{m, n}$.
Equivalently, we write following (29):

$$
\begin{equation*}
\hat{S}_{L}(\alpha, \beta)_{m, n}=\tau_{m, n}^{\prime \alpha} \chi_{m, n}^{\beta} \tag{40}
\end{equation*}
$$

where

$$
\begin{align*}
& \chi_{m, n}^{\beta}=\lambda^{\beta} f^{\beta}\left(u_{m, n}\right) \tag{41}\\
& u_{m, n}=\delta_{m-1, n}(v-t-2 n \eta)+\delta_{m+1, n}(v+t+2 m \eta) \tag{42}
\end{align*}
$$

$$
\begin{align*}
& \lambda_{m, n}^{\beta}=-\beta \delta_{m-1, n}+\delta_{m+1, n} \tag{43}\\
& {\overline{\tau^{\prime}}}_{m, n}^{\alpha}=\delta_{m-1, n} \tau_{\alpha, n}^{\prime}+\delta_{m+1, n} \tau_{\alpha,-m}^{\prime} \tag{44}
\end{align*}
$$

It follows then from (35) and (40)

$$
\begin{equation*}
\hat{S}_{L}(\alpha, \gamma)_{m, n}(u) \hat{S}_{R}(\gamma, \beta)_{m^{\prime} n^{\prime}}(v)=\tau_{m, n}^{\prime \alpha} \chi_{m, n}^{\gamma}(u) \Phi_{m^{\prime}, n^{\prime}}^{\gamma}(v) \tau_{m^{\prime}, n^{\prime}}^{\beta} \tag{45}
\end{equation*}
$$

and from (36) and (41) one obtains

$$
\begin{align*}
\chi_{m, n}^{\gamma}(u) \Phi_{m^{\prime}, n^{\prime}}^{\gamma} & (v)=\left(\delta_{m+1, n} \delta_{m^{\prime}+1, n^{\prime}}+\delta_{m-1, n} \delta_{m^{\prime}-1, n^{\prime}}\right)\left(\Theta\left(u_{m, n}\right) \Theta\left(v_{m^{\prime}, n^{\prime}}\right)-H\left(u_{m, n}\right) H\left(v_{m^{\prime}, n^{\prime}}\right)\right) \\
& +\left(\delta_{m+1, n} \delta_{m^{\prime}-1, n^{\prime}}+\delta_{m-1, n} \delta_{m^{\prime}+1, n^{\prime}}\right)\left(\Theta\left(u_{m, n}\right) \Theta\left(v_{m^{\prime}, n^{\prime}}\right)+H\left(u_{m, n}\right) H\left(v_{m^{\prime}, n^{\prime}}\right)\right), \tag{46}
\end{align*}
$$

with non-vanishing elements

$$
\begin{align*}
& \chi_{m, m+1}^{\gamma}(u) \Phi_{m^{\prime}, m^{\prime}+1}^{\gamma}(v)=\Theta\left(u_{m, m+1}\right) \Theta\left(v_{m^{\prime}, m^{\prime}+1}\right)-H\left(u_{m, m+1}\right) H\left(v_{m^{\prime}, m^{\prime}+1}\right) \tag{47}\\
& \chi_{m, m-1}^{\gamma}(u) \Phi_{m^{\prime}, m^{\prime}-1}^{\gamma}(v)=\Theta\left(u_{m, m-1}\right) \Theta\left(v_{m^{\prime}, m^{\prime}-1}\right)-H\left(u_{m, m-1}\right) H\left(v_{m^{\prime}, m^{\prime}-1}\right) \tag{48}\\
& \chi_{m, m+1}^{\gamma}(u) \Phi_{m^{\prime}, m^{\prime}-1}^{\gamma}(v)=\Theta\left(u_{m, m+1}\right) \Theta\left(v_{m^{\prime}, m^{\prime}-1}\right)+H\left(u_{m, m+1}\right) H\left(v_{m^{\prime}, m^{\prime}-1}\right) \tag{49}\\
& \chi_{m, m-1}^{\gamma}(u) \Phi_{m^{\prime}, m^{\prime}+1}^{\gamma}(v)=\Theta\left(u_{m, m-1}\right) \Theta\left(v_{m^{\prime}, m^{\prime}+1}\right)+H\left(u_{m, m-1}\right) H\left(v_{m^{\prime}, m^{\prime}+1}\right) . \tag{50}
\end{align*}
$$

The arguments are

$$
\begin{align*}
& u_{m, m+1}(u)-v_{m^{\prime}, m^{\prime}+1}(v)=u-v+2\left(m+m^{\prime}\right) \eta+2 t \\
& u_{m, m-1}(u)-v_{m^{\prime}, m^{\prime}-1}(v)=u-v-2\left(n+n^{\prime}\right) \eta-2 t \\
& u_{m, m+1}(u)-v_{m^{\prime}, m^{\prime}-1}(v)=u-v+2\left(m-m^{\prime}+1\right) \eta \\
& u_{m, m-1}(u)-v_{m^{\prime}, m^{\prime}+1}(v)=u-v-2\left(m-m^{\prime}-1\right) \eta \\
& u_{m, m+1}(u)+v_{m^{\prime}, m^{\prime}+1}(v)=u+v+2\left(m-m^{\prime}\right) \eta \tag{51}\\
& u_{m, m-1}(u)+v_{m^{\prime}, m^{\prime}-1}(v)=u+v+2\left(-n+n^{\prime}\right) \eta \\
& u_{m, m+1}(u)+v_{m^{\prime}, m^{\prime}-1}(v)=u+v+2\left(m+n^{\prime}\right) \eta+2 t \\
& u_{m, m-1}(u)+v_{m^{\prime}, m^{\prime}+1}(v)=u+v-2\left(n+m^{\prime}\right) \eta-2 t
\end{align*}
$$

To rewrite (47)-(50), we use

$$
\begin{align*}
& \Theta(u) \Theta(v)+H(u) H(v)=c f_{+}(u+v) g_{+}(u-v) \tag{52}\\
& \Theta(u) \Theta(v)-H(u) H(v)=c f_{-}(u+v) g_{-}(u-v) \tag{53}\\
& f_{+}(u)=H\left(\left(\mathrm{i} K^{\prime}+u\right) / 2\right) H\left(\left(\mathrm{i} K^{\prime}-u\right) / 2\right) g_{+}(u)=H_{1}\left(\left(\mathrm{i} K^{\prime}+u\right) / 2\right) H_{1}\left(\left(\mathrm{i} K^{\prime}-u\right) / 2\right) \tag{54}\\
& f_{-}(u)=H_{1}\left(\left(\mathrm{i} K^{\prime}+u\right) / 2\right) H_{1}\left(\left(\mathrm{i} K^{\prime}-u\right) / 2\right) g_{-}(u)=H\left(\left(\mathrm{i} K^{\prime}+u\right) / 2\right) H\left(\left(\mathrm{i} K^{\prime}-u\right) / 2\right) . \tag{55}
\end{align*}
$$

We need especially the following properties of $g_{ \pm}$:

$$
\begin{equation*}
g_{ \pm}(-u)=g_{ \pm}(u) \quad g_{ \pm}(u+4 K)=g_{ \pm}(u) \tag{56}
\end{equation*}
$$

After insertion of (52)-(55) into (47)-(50) we get

$$
\begin{align*}
& \chi_{m, m+1}^{\gamma}(u) \Phi_{m^{\prime}, m^{\prime}+1}^{\gamma}(v)=c f_{-}\left(u+v+2\left(m-m^{\prime}\right) \eta\right) g_{-}\left(u-v+2\left(m+m^{\prime}\right) \eta+2 t\right) \tag{57}\\
& \chi_{m, m-1}^{\gamma}(u) \Phi_{m^{\prime}, m^{\prime}-1}^{\gamma}(v)=c f_{-}\left(u+v+2\left(m^{\prime}-m\right) \eta\right) g_{-}\left(u-v-2\left(n+n^{\prime}\right) \eta-2 t\right) \tag{58}
\end{align*}
$$

$\chi_{m, m+1}^{\gamma}(u) \Phi_{m^{\prime}, m^{\prime}-1}^{\gamma}(v)=c f_{+}\left(u+v+2\left(m+n^{\prime}\right) \eta+2 t\right) g_{+}\left(u-v+2\left(m-m^{\prime}+1\right) \eta\right)$
$\left.\chi_{m, m-1}^{\gamma}(u) \Phi_{m^{\prime}, m^{\prime}+1}^{\gamma}(v)=c f_{+}\left(u+v-2\left(n+m^{\prime}\right) \eta-2 t\right) \eta\right) g_{+}\left(u-v-2\left(m-m^{\prime}-1\right) \eta\right)$.
It now remains to show that a $L^{2} \times L^{2}$ matrix Y exists such that equation (33) is satisfied for \hat{S}_{R} and \hat{S}_{L}. As τ and τ^{\prime} occurring in the definition of \hat{S}_{R} and \hat{S}_{L} are free parameters we obtain from (33)

$$
\begin{equation*}
\chi_{m, n}^{\gamma}(u) \Phi_{m^{\prime}, n^{\prime}}^{\gamma}(v)=Y_{m, m^{\prime} ; k, k^{\prime}} \chi^{\gamma}(v)_{k, l} \Phi^{\gamma}(u)_{k^{\prime}, l^{\prime}} Y_{l, l^{\prime} ; n, n^{\prime}}^{-1} . \tag{61}
\end{equation*}
$$

Taking tentatively Y to be diagonal

$$
\begin{equation*}
Y_{m, m^{\prime} ; k, k^{\prime}}=y_{m, m^{\prime}} \delta_{m, k} \delta_{m^{\prime}, k^{\prime}}, \tag{62}
\end{equation*}
$$

we get

$$
\begin{equation*}
\chi_{m, n}^{\gamma}(u) \Phi_{m^{\prime}, n^{\prime}}^{\gamma}(v)=\frac{y_{m, m^{\prime}}}{y_{n, n^{\prime}}} \chi_{m, n}^{\gamma}(v) \Phi_{m^{\prime}, n^{\prime}}^{\gamma}(u) \tag{63}
\end{equation*}
$$

and it follows from (57)-(60)

$$
\begin{align*}
& y_{m+1, m^{\prime}+1}=y_{m, m^{\prime}} \frac{g_{-}\left(u-v-2\left(m+m^{\prime}\right) \eta-2 t\right)}{g_{-}\left(u-v+2\left(m+m^{\prime}\right) \eta+2 t\right)} \tag{64}\\
& y_{m+1, m^{\prime}-1}=y_{m, m^{\prime}} \frac{g_{+}\left(u-v-2\left(m-m^{\prime}+1\right) \eta\right)}{\left.g_{+}\left(u-v+2\left(m-m^{\prime}+1\right) \eta\right)\right)} \tag{65}
\end{align*}
$$

To prove that a matrix Y can be found such that (61) is satisfied we have to show that the set of equations (64)-(65) is free from contradictions on the torus of size $L \times L$ where

$$
\begin{equation*}
y_{m+L, n+L}=y_{m, n} \tag{66}
\end{equation*}
$$

It follows from equation (64) that

$$
\begin{align*}
y_{m+L, n+L}= & \frac{g_{-}(u-v-2(m+n) \eta-4(L-1) \eta-2 t)}{g_{-}(u-v+2(m+n) \eta+4(L-1) \eta+2 t)} \\
& \times \frac{g_{-}(u-v-2(m+n) \eta-4(L-2) \eta-2 t)}{g_{-}(u-v+2(m+n) \eta+4(L-2) \eta+2 t)} \cdots \\
& \frac{g_{-}(u-v-2(m+n) \eta-2 t)}{g_{-}(u-v+2(m+n) \eta+2 t)} y_{m, n} \tag{67}
\end{align*}
$$

The factor $g_{-}\left(u-v-2(m+n) \eta+4 r_{2} \eta-2 t\right)$ in the numerator cancels the factor $g_{-}\left(u-v+2(m+n) \eta+4 r_{1} \eta+2 t\right)$ in the denominator if $t=0$ and

$$
\begin{equation*}
-2(m+n) \eta-4 r_{2} \eta=2(m+n) \eta+4 r_{1} \eta+4 k K \tag{68}
\end{equation*}
$$

for arbitrary k and if we set $k=2 m_{1} k_{1}$ for integer k_{1} :

$$
\begin{equation*}
r_{2}=k_{1} L-m-n-r_{1} . \tag{69}
\end{equation*}
$$

It follows that for each factor in the numerator of equation (67) there is a factor in the denominator against which it cancels. Similarly we derive from equation (65) that

$$
\begin{equation*}
y_{m, n}=y_{m-L, n+L} . \tag{70}
\end{equation*}
$$

We have shown that all $y_{m, n}$ can be determined from a single element (e.g. $y_{1,1}$) consistently if $t=0$. This conclusion cannot be drawn for $t \neq 0$. A numerical test of (31) shows that it is not satisfied for $t \neq 0$, and therefore no similarity transformation (33) exists for $t \neq 0$.

We summarize what has been found in this section.

We have attained our goal to construct a Q-matrix which exists for $\eta=2 m K / L$ for odd L :

The \hat{Q}_{R}-matrix defined in equation (5) with local matrices \hat{S}_{R} defined in (22) is regular.

If the parameter t is set to zero relation (31) is satisfied.
Then $\hat{Q}(v)=\hat{Q}_{R}(v) \hat{Q}_{R}^{-1}\left(v_{0}\right)$ satisfies equation (1) and commutes with the transfer matrix T.

2. Quasiperiodicity properties of Q

It is easily seen that $Q_{72, R}(v)$ and $\hat{Q}_{R}(v, t)$ satisfy

$$
\begin{equation*}
\hat{Q}_{72, R}(v+2 K)=S \hat{Q}_{72, R}(v) \quad \hat{Q}_{R}(v+2 K, t)=S \hat{Q}_{R}(v, t) . \tag{71}
\end{equation*}
$$

It is of great importance to find the quasiperiodicity properties of the Q-matrices in the complex v-plane. We do that in this section for $Q_{72, R}(v)$ and $\hat{Q}_{R}(v, t=0)$. It is well known that the quasiperiod of Q_{73} is $i K^{\prime}$. See [9] for details. We shall present plausibility arguments for the statement that $Q_{72, R}$ as well as \hat{Q} are singular matrices if their quasiperiod is iK^{\prime}.

2.1. Quasiperiodicity properties of Q_{72}

We get from equations (15), (A.4), (A.5) and from

$$
\begin{equation*}
\eta=m_{1} K / L \tag{72}
\end{equation*}
$$

the relations

$$
\begin{align*}
& \mathrm{S}_{R}(\pm, \beta)_{k, k+1}\left(v+\mathrm{iK}^{\prime}\right)=f(v) \exp (+\mathrm{i} \pi k \eta / K) \mathrm{S}_{R}(\mp, \beta)(v)_{k, k+1} \\
& \mathrm{~S}_{R}(\pm, \beta)_{k+1, k}\left(v+\mathrm{iK}^{\prime}\right)=f(v) \exp (-\mathrm{i} \pi k \eta / K) \mathrm{S}_{R}(\mp, \beta)(v)_{k+1, k} \tag{73}\\
& \mathrm{~S}_{R}(\pm, \beta)_{1,1}\left(v+\mathrm{iK}^{\prime}\right)=f(v) \mathrm{S}_{R}(\mp, \beta)(v)_{1,1} \\
& \mathrm{~S}_{R}(\pm, \beta)_{L, L}\left(v+\mathrm{iK}^{\prime}\right)=(-1)^{m_{1}} f(v) \mathrm{S}_{R}(\mp, \beta)(v)_{L, L},
\end{align*}
$$

where

$$
\begin{equation*}
f(v)=q^{-1 / 4} \exp \left(-\frac{\mathrm{i} \pi v}{2 K}\right) \tag{74}
\end{equation*}
$$

The similarity transformation

$$
\begin{equation*}
\bar{S}(\alpha, \beta)_{i, l}=A_{i, j} \hat{S}(\alpha, \beta)_{j, k} A_{k, l}^{-1}, \tag{75}
\end{equation*}
$$

with

$$
\begin{equation*}
A_{k, l}=\delta_{k, l} \exp \left(\frac{\mathrm{i} \pi}{2 K}(k-1) k \eta\right) a_{1} \tag{76}
\end{equation*}
$$

leads to

$$
\begin{align*}
& \tilde{\mathrm{S}}_{R}(\pm, \beta)_{k, k+1}\left(v+\mathrm{iK}^{\prime}\right)=f(v) \mathrm{S}_{R}(\mp, \beta)(v)_{k, k+1} \\
& \tilde{\mathrm{~S}}_{R}(\pm, \beta)_{k+1, k}\left(v+\mathrm{iK}^{\prime}\right)=f(v) \mathrm{S}_{R}(\mp, \beta)(v)_{k+1, k} \tag{77}\\
& \tilde{\mathrm{~S}}_{R}(\pm, \beta)_{1,1}\left(v+\mathrm{iK}^{\prime}\right)=f(v) \mathrm{S}_{R}(\mp, \beta)(v)_{1,1} \\
& \tilde{\mathrm{~S}}_{R}(\pm, \beta)_{L, L}\left(v+\mathrm{iK}^{\prime}\right)=(-1)^{m_{1}} f(v) \mathrm{S}_{R}(\mp, \beta)(v)_{L, L}
\end{align*}
$$

If m_{1} is even it follows that

$$
\begin{equation*}
\tilde{\mathrm{S}}_{R}(\alpha, \beta)_{k, l}\left(v+\mathrm{i} \mathrm{~K}^{\prime}\right)=f(v) R(\alpha, \gamma) \mathrm{S}_{R}(\gamma, \beta)(v)_{k, l}, \tag{78}
\end{equation*}
$$

where R is defined in equation (4) and

$$
\begin{equation*}
Q_{R, 72}\left(v+\mathrm{iK}^{\prime}\right)=f(v)^{N} R Q_{R, 72}(v) \tag{79}
\end{equation*}
$$

However, it is well known [5] that for even $m_{1} Q_{R, 72}(v)$ is singular and consequently relation (79) cannot be upgraded from $Q_{R, 72}$ to Q_{72}. It is shown in [5] that instead of (79) the following relation holds:

$$
\begin{equation*}
Q_{R, 72}\left(v+2 \mathrm{iK}^{\prime}\right)=q^{-N} \exp (-\mathrm{i} N \pi v / K) Q_{R, 72}(v), \tag{80}
\end{equation*}
$$

which is correct for all $\eta=m_{1} K / L$. Provided m_{1} is odd it follows

$$
\begin{equation*}
Q_{72}\left(v+2 \mathrm{iK}^{\prime}\right)=q^{-N} \exp (-\mathrm{i} N \pi v / K) Q_{72}(v) \tag{81}
\end{equation*}
$$

2.2. Quasiperiodicity properties of \hat{Q}

We obtain from equation (22)

$$
\begin{align*}
& \hat{S}_{R}(\pm, \beta)\left(v+\mathrm{iK}^{\prime}\right)_{k, k+1}=f(v)(-\mathrm{i}) \exp (+\mathrm{i} \pi k \eta / K) \hat{S}_{R}(\mp, \beta)(v)_{k, k+1} \tag{82}\\
& \hat{S}_{R}(\pm, \beta)\left(v+\mathrm{i}^{\prime}\right)_{k+1, k}=f(v)(+\mathrm{i}) \exp (-\mathrm{i} \pi k \eta / K) \hat{S}_{R}(\mp, \beta)(v)_{k+1, k} \tag{83}
\end{align*}
$$

Perform the similarity transformation

$$
\begin{equation*}
\bar{S}(\alpha, \beta)_{i, l}=A_{i, j} \hat{S}(\alpha, \beta)_{j, k} A_{k, l}^{-1}, \tag{84}
\end{equation*}
$$

with

$$
\begin{equation*}
A_{k, l}=\delta_{k, l}(-\mathrm{i})^{k-1} \exp \left(\frac{\mathrm{i} \pi}{2 K}(k-1) k \eta\right) a_{1} \tag{85}
\end{equation*}
$$

Then for $k<L$,

$$
\begin{align*}
& \bar{S}_{R}(\pm, \beta)\left(v+\mathrm{iK}^{\prime}\right)_{k, k+1}=f(v) \hat{S}_{R}(\mp, \beta)(v)_{k, k+1} \tag{86}\\
& \bar{S}_{R}(\pm, \beta)\left(v+\mathrm{i} \mathrm{~K}^{\prime}\right)_{k+1, k}=f(v) \hat{S}_{R}(\mp, \beta)(v)_{k+1, k} \tag{87}
\end{align*}
$$

and for $k=L$,
$\bar{S}_{R}(\pm, \beta)\left(v+\mathrm{iK}^{\prime}\right)_{L, 1}=f(v) \exp \left[\frac{\mathrm{i} \pi}{2}\left(\left(2 m_{1}-1\right) L+2 m_{1}\right)\right] \hat{S}_{R}(\mp, \beta)(v)_{k, k+1}$
$\bar{S}_{R}(\pm, \beta)\left(v+\mathrm{iK}^{\prime}\right)_{1, L}=f(v) \exp \left[\frac{-\mathrm{i} \pi}{2}\left(\left(2 m_{1}-1\right) L+2 m_{1}\right)\right] \hat{S}_{R}(\mp, \beta)(v)_{k+1, k}$.
We find that if

$$
\begin{equation*}
\exp \left[\frac{-\mathrm{i} \pi}{2}\left(\left(2 m_{1}-1\right) L+2 m_{1}\right)\right]=1 \tag{90}
\end{equation*}
$$

\hat{Q}_{R} satisfies the relation

$$
\begin{equation*}
\hat{Q}_{R}\left(v+\mathrm{i}^{\prime}\right)=q^{-N / 4} \exp \left(-\frac{\mathrm{i} \pi N v}{2 K}\right) R \hat{Q}_{R}(v) \tag{91}
\end{equation*}
$$

which is the same as (79) for $Q_{R, 72}$. This happens only for
(I) even m_{1} if $L=4 \times$ integer
(II) odd m_{1} if $L=2 \times$ odd integer.

These are exactly those cases in which \hat{Q}_{R} is singular. Like equation (79) equation (91) does not give the corresponding relation for the Q-matrix \hat{Q}.

In the following paragraph Q denotes either Q_{72} or \hat{Q}.
We note that if the relation

$$
\begin{equation*}
\mathrm{Q}\left(v+\mathrm{i}^{\prime}\right)=q^{-N / 4} \exp \left(-\frac{\mathrm{i} \pi N v}{2 K}\right) R \mathrm{Q}_{(v)} \tag{92}
\end{equation*}
$$

were correct then it would follow that

$$
\begin{equation*}
q\left(v+\mathrm{i}^{\prime}\right)|q\rangle=q^{-N / 4} \exp \left(-\frac{\mathrm{i} \pi N v}{2 K}\right) q(v) R|q\rangle \tag{93}
\end{equation*}
$$

where $|q\rangle$ denotes an arbitrary eigenvector of $\mathrm{Q}(v)$ and $q(v)$ is its eigenvalue.
In other words: all eigenvectors of $\hat{Q}_{(} v$) would be eigenvectors of R. It is however well known [5] that the eigenvectors of $Q_{72}(v)$ which are degenerate eigenvectors of the transfer matrix T are generally not eigenvectors of R.
Equations (79) and (91) allow a coherent explanation of the fact that Q_{R} is singular for one set of η values and regular for another. Under the assumption that if Q exists there are eigenstates of Q which are not eigenstates of R, Q_{R} cannot be regular if in case of Q_{72}, m_{1} is even or in case of $\hat{Q}(90)$ is satisfied. This also explains naturally the observation that for fixed L and sufficiently small $N Q_{R}^{-1}$ exists always as then all states are singlets and (79) and (91) do not lead to contradictions when upgraded from Q_{R} to Q.

Using the method used in this section it can easily be shown that always

$$
\begin{equation*}
\hat{Q}_{R}\left(v+2 \mathrm{i} K^{\prime}\right)=q^{-N} \exp (-\mathrm{i} N \pi v / K) \hat{Q}_{R}(v) \tag{94}
\end{equation*}
$$

and consequently if \hat{Q}_{R}^{-1} exists

$$
\begin{equation*}
\hat{Q}\left(v+2 \mathrm{i} K^{\prime}\right)=q^{-N} \exp (-\mathrm{i} N \pi v / K) \hat{Q}(v) . \tag{95}
\end{equation*}
$$

3. The properties of \hat{Q} for $t=0$

It follows from (95) that as shown for Q_{72} in [5], $\hat{Q}(v)$ may be written as

$$
\begin{align*}
& \hat{Q}(v)=\hat{\mathcal{K}}\left(q ; v_{k}\right) \exp \left(\mathrm{i}\left(n_{B}-v\right) \pi v / 2 K\right) \prod_{j=1}^{n_{B}} h\left(v-v_{j}^{B}\right) \\
& \quad \times \prod_{j=1}^{n_{L}} H\left(v-\mathrm{i} w_{j}\right) H\left(v-\mathrm{i} w_{j}-2 \eta\right) \cdots H\left(v-\mathrm{i} w_{j}-2(L-1) \eta\right) \tag{96}\\
& 2 n_{B}+L n_{L}=N \tag{97}
\end{align*}
$$

n_{B} is the number of Bethe roots v_{k}^{B} and n_{L} is the number of exact Q-strings of length L. The sum rules (2.16)-(2.21) of [5] are also true for $\hat{Q}(v)$.

From (71) and

$$
\begin{equation*}
\hat{Q}_{L}(v) \hat{Q}_{R}(u)=\hat{Q}_{L}(u) \hat{Q}_{R}(v) \tag{98}
\end{equation*}
$$

follows that

$$
\begin{equation*}
[S, \hat{Q}(v)]=0 . \tag{99}
\end{equation*}
$$

Finally, we find numerically that the functional relation (3) which was originally conjectured in [5] is also satisfied for $\hat{Q}(v)$.

4. The matrix $\hat{Q}(v, t)$

We have shown that $\hat{Q}_{R}(v)$ satisfies the $T-\hat{Q}_{R}$ relation and found that it is not singular. But the proof of relation (31) failed for parameter $t \neq 0$. One finds numerically that (31) is in fact violated for systems large enough to allow degenerate eigenvalues of the transfer matrix. Therefore, the question arises whether $\hat{Q}_{R}(v, t)$ is useful at all. Surprisingly, we find numerically that for $\eta=2 m K / L$ and odd L despite

$$
\begin{equation*}
\hat{Q}_{L}^{-1}\left(v_{0}, t\right) \hat{Q}_{L}(v, t) \neq \hat{Q}_{R}(v, t) \hat{Q}_{R}^{-1}\left(v_{0}, t\right) \tag{100}
\end{equation*}
$$

both matrices
$\hat{Q}^{(L)}(v, t)=\hat{Q}_{L}^{-1}\left(v_{0}, t\right) \hat{Q}_{L}(v, t) \quad$ and $\quad \hat{Q}^{(R)}(v, t)=\hat{Q}_{R}(v, t) \hat{Q}_{R}^{-1}\left(v_{0}, t\right)$
commute with the transfer matrix T. Furthermore, we find that in the cases studied $\hat{Q}^{(L)}(v, t)$ and $\hat{Q}^{(R)}(v, t)$ have the same eigenvalues. This means that there exists a matrix A with $\hat{Q}^{(L)}(v, t)=A \hat{Q}^{(R)}(v, t) A^{-1}$ and consequently instead of (31)

$$
\begin{equation*}
\hat{Q}_{L}(v) A \hat{Q}_{R}(u)=\hat{Q}_{L}(u) A \hat{Q}_{R}(v) \tag{102}
\end{equation*}
$$

should hold. A consequence of (100) is that

$$
\begin{equation*}
\left[\hat{Q}^{(R)}\left(v_{1}, t\right), \hat{Q}^{(R)}\left(v_{2}, t\right)\right] \neq 0 \tag{103}
\end{equation*}
$$

as one needs (31) to prove that Q-matrices with different arguments commute (see 9.48 .41 in [9]). We find that like Q_{72} the matrix \hat{Q} does not commute with R :

$$
\begin{equation*}
[R, \hat{Q}(v, t)] \neq 0 \tag{104}
\end{equation*}
$$

but unlike Q_{72} as a consequence of (100) does also not commute with S for $t \neq 0$:

$$
\begin{equation*}
[S, \hat{Q}(v, t)] \neq 0 \tag{105}
\end{equation*}
$$

This is possible because the degenerate subspaces of T have elements with both eigenvalues $v^{\prime}=0,1$ of S if $\eta=2 m_{1} K / L$ and L is odd.

These properties of $\hat{Q}^{(L)}(v, t)$ and $\hat{Q}^{(R)}(v, t)$ imply that they act as non-Abelian symmetry operators in all degenerate subspaces of the set of eigenvectors of T. We finally mention that whereas the six-vertex limit of $Q_{R, 72}$ does not exist it exists for \hat{Q}_{R}. The limit of $\hat{Q}_{R}\left(v, t=\mathrm{i} K^{\prime} / 2\right)$ for elliptic nome $q \rightarrow 0$ is well defined. Using

$$
\begin{equation*}
\lim _{q \rightarrow 0} H\left(u \pm \mathrm{i} K^{\prime} / 2\right)=\exp (\mp \mathrm{i}(u-\pi / 2)) \lim _{q \rightarrow 0} \Theta\left(u \pm \mathrm{i} K^{\prime} / 2\right)=1, \tag{106}
\end{equation*}
$$

one gets a regular limiting \hat{Q}_{R}-matrix. It has been checked numerically that the resulting \hat{Q}-matrix commutes with $T_{6 v}$.

Acknowledgment

I am pleased to thank Professor Barry M McCoy for helpful comments and suggestions.

Appendix

The transfer matrix of the eight-vertex model is

$$
\begin{equation*}
\left.T(v)\right|_{\mu, v}=\operatorname{Tr} W_{8}\left(\mu_{1}, \nu_{1}\right) W_{8}\left(\mu_{2}, \nu_{2}\right) \cdots W_{8}\left(\mu_{N}, v_{N}\right) \tag{A.1}
\end{equation*}
$$

where in the conventions of (6.2) of [1]

$$
\begin{align*}
& \left.W_{8}(1,1)\right|_{1,1}=\left.W_{8}(-1,-1)\right|_{-1,-1}=a=\rho \Theta(2 \eta) \Theta(v-\eta) H(v+\eta) \\
& \left.W_{8}(-1,-1)\right|_{1,1}=\left.W_{8}(1,1)\right|_{-1,-1}=b=\rho \Theta(2 \eta) H(v-\eta) \Theta(v+\eta) \\
& \left.W_{8}(-1,1)\right|_{1,-1}=\left.W_{8}(1,-1)\right|_{-1,1}=c=\rho H(2 \eta) \Theta(v-\eta) \Theta(v+\eta) \tag{A.2}\\
& \left.W_{8}(1,-1)\right|_{1,-1}=\left.W_{8}(-1,1)\right|_{-1,1}=d=\rho H(2 \eta) H(v-\eta) H(v+\eta) .
\end{align*}
$$

Relations used in the text. See e.g. [10]

$$
\begin{align*}
& \operatorname{sn}(u-v)=\frac{\operatorname{sn}(u) \operatorname{cn}(v) \mathrm{dn}(v)-\operatorname{sn}(v) \operatorname{cn}(u) \mathrm{dn}(u)}{1-k^{2} \mathrm{sn}^{2}(u) \mathrm{sn}^{2}(v)} \tag{A.3}\\
& H\left(v+\mathrm{i} K^{\prime}\right)=\mathrm{i} q^{-1 / 4} \exp \left(-\frac{\mathrm{i} \pi v}{2 K}\right) \Theta(v) \tag{A.4}\\
& \Theta\left(v+\mathrm{i} K^{\prime}\right)=\mathrm{i} q^{-1 / 4} \exp \left(-\frac{\mathrm{i} \pi v}{2 K}\right) H(v) . \tag{A.5}
\end{align*}
$$

References

[1] Baxter R J 1972 Partition function of the eight vertex model Ann. Phys. 70193
[2] Baxter R J 1973 Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain: I. Some fundamental eigenvectors Ann. Phys. 761
[3] Baxter R J 1973 Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain: II. Equivalence to a generalized ice-type lattice model Ann. Phys. 7625
[4] Baxter R J 1973 Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain: III. Eigenvectors of the transfer matrix and the Hamiltonian Ann. Phys. 7648
[5] Fabricius K and McCoy B M 2003 New developments in the eight vertex model J. Stat. Phys. 111 323-37
[6] Fabricius K and McCoy B M 2004 Functional equations and fusion matrices for the eight-vertex model Publ. RIMS 40905
[7] Fabricius K and McCoy B 2002 Evaluation parameters and Bethe roots for the six-vertex model at roots of unity MathPhys Odyssey 2001 (Progress in Mathematical Physics 23) ed M Kashiwara and T Miwa (Boston: Birkhäuser) pp 119-44
[8] Bazhanov V V and Stroganov Yu G 1990 Chiral Potts Model as a Descendant of the Six-vertex Model J. Stat. Phys. 59799
[9] Baxter R J 1982 Exactly Solved Models (London: Academic)
[10] Whittaker E T and Watson G N A Course of Modern Analysis (Cambridge: Cambridge University Press)
[11] Roan Sih-shyr 2006 Preprint cond-mat/0611316

[^0]: 1 There now exists a related investigation by Roan [11].

