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Abstract
We construct a Q-matrix for the eight-vertex model at roots of unity for crossing
parameter η = 2mK/L with odd L, a case for which the existing constructions
do not work. The new Q-matrix Q̂ depends on the spectral parameter v and
also on a free parameter t. For t = 0, Q̂ has the standard properties. For
t �= 0, however, it does not commute with the operator S nor with itself for
different values of the spectral parameter. We show that the six-vertex limit of
Q̂(v, t = iK ′/2) exists.

PACS number: 75.10.Jm

An essential tool in Baxter’s solution of the eight-vertex model [1–4] is the Q-matrix which
satisfies the T Q equation

T (v)Q(v) = [ρh(v − η)]NQ(v + 2η) + [ρh(v + η)]NQ(v − 2η) (1)

and commutes with T. Here T (v) is the transfer matrix of the eight-vertex model (A.1).
Combined with periodicity properties of Q(v) in the complex v-plane equation (1) leads to
the derivation of Bethe’s equations and the solution of the model. For generic values of the
crossing parameter η the transfer matrix T has a non-degenerate spectrum. For rational values
of η/K however this is not the case. This leads to the existence of different Q-matrices which
all satisfy equation (1). In [1], Baxter constructs a Q-matrix valid for

2Lη = 2m1K + im2K
′ (2)

with integers m1,m2, L. In [2], Baxter derived a Q-matrix valid for generic values of η. As
these Q-matrices are different we distinguish them by writing Q72 and Q73 respectively for
the constructions in [1, 2]. It turned out, however, that Q72 has interesting properties beyond
its role in equation (1) because of its restriction to rational values of η/K .

In [5], it is conjectured that Q72(v) satisfies the following functional relation.
For N even and η = m1K/L where either L even or L and m1 odd

e−Nπ iv/2KQ72(v − iK ′) = A

L−1∑
l=0

hN(v − (2l + 1)η)
Q72(v)

Q72(v − 2lη)Q72(v − 2(l + 1)η)
, (3)
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A is a normalizing constant matrix independent of v that commutes with Q72 and h(v) =
H(v)�(v). There is a proof of this conjecture valid for L = 2 in [6]. This functional relation
is important as it allows the conclusion that the dimension of eigenspaces of degenerate
eigenvalues of the T-matrix is a power of 2, a result also true in the six-vertex model provided
the roots of the Drinfeld polynomial of the loop algebra symmetry are distinct [7].

The reason why the case L odd and m1 even is excluded in (3) is that Q72 does not exist
in this case [5].

The purpose of this paper is to close this gap1. We construct for even N a Q-matrix which
exists for η = 2mK/L for odd L which satisfies the functional relation (3). Beyond that we
shall show that for η = 2mK/L a more general Q-matrix exists which depends on a free
parameter t and which does not commute with R and S where

R = σ1 ⊗ σ1 ⊗ · · · ⊗ σ1︸ ︷︷ ︸
N factors

S = σ3 ⊗ σ3 ⊗ · · · ⊗ σ3︸ ︷︷ ︸
N factors

(4)

and not even with itself for different spectral parameters

[Q(v1, t),Q(v2, t)] �= 0.

This phenomenon has also been observed by Bazhanov and Stroganov in [8] for their column-
to-column transfer matrix Tcol which acts like a Q-matrix in the six-vertex model: it satisfies
(1) and it commutes with T6. But it does not commute with itself for different arguments.

We use the notation of Baxter’s 1972 paper. We denote our new Q-operators by Q̂R, Q̂L

and Q̂. They depend on two arguments v and t, e.g. Q̂R(v, t). For brevity we shall write
Q̂R(v) instead of Q̂R(v, 0). The symbols Q,QR etc refer to all types of Q matrices.

The plan of this paper is as follows. In section 1 we describe the various steps in the
construction of Q. We first outline in section 1.1 the general method developed by Baxter and
his solution leading to Q72. In section 1.2 we present our new Q̂R operator and describe its
range of validity. In section 1.3 we introduce the matrix QL and show in section 1.4 that the
famous equation QL(u)QR(v) = QL(v)QR(u) which Baxter proved for Q72 and Q73 is also
satisfied by Q̂(v). In section 2 we study the quasiperiodicity properties of Q(v) and show that
there exists a link between quasiperiodicity of QR with quasiperiod iK ′ and non-existence of
Q−1

R . We summarize in section 3 the properties of Q̂(v) and describe in section 4 the exotic
properties of Q̂(v, t) for t �= 0.

1. Construction of a Q-matrix for η = 2mK/L

1.1. Baxter’s construction of Q72

The goal is to find a matrix QR of the form

[QR(v)]α|β = Tr SR(α1, β1)SR(α2, β2) · · · SR(αN, βN), (5)

where αj and βj = ±1 and SR(α, β) is a matrix of size L × L such that QR satisfies

T (v)QR(v) = [ρh(v − η)]NQR(v + 2η) + [ρh(v + η)]NQR(v − 2η). (6)

The Q-matrix occurring in equation (1) is then

Q(v) = QR(v)Q−1
R (v0) (7)

for some constant v0. Therefore, it is necessary that QR(v) is a regular matrix. The problem
to construct a QR of the form (5) satisfying (6) is posed and solved by Baxter in appendix C

1 There now exists a related investigation by Roan [11].
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of [1]. In order to construct a QR-matrix which is regular for η = mK/L for even m and odd
L, we shall search for other solutions of Baxter’s fundamental equations.

These equations are (see (C10), (C11) in [1])

(apn − bpm)SR(+, β)m,n + (d − cpmpn)SR(−, β)m,n = 0

(c − dpmpn)SR(+, β)m,n + (bpn − apm)SR(−, β)m,n = 0,
(8)

where β = +,−,m, n = 1, . . . , L and a, b, c, d are defined in (A.2). Equations (8) determine
the elements of the local matrices SR(α, β) occurring in (5) provided that the determinant of
this system of homogeneous linear equations vanishes:

(a2 + b2 − c2 − d2)pmpn = ab
(
p2

m + pn2
n

) − cd
(
1 + p2

mp2
n

)
. (9)

This determines pn if pm is given. Setting

pm = k1/2 sn(u), (10)

it follows from (A.3) that

pn = k1/2 sn(u ± 2η). (11)

Baxter selected a solution which has non-vanishing diagonal elements SR(α, β)0,0 and
SR(α, β)L,L. In order to allow SR(α, β)m,n to have non-vanishing diagonal elements
SR(α, β)0,0 and SR(α, β)L,L equation (9) has to be satisfied for n = m. Then

sn(u) = sn(u ± 2η). (12)

This fixes the parameter u to become u = K ± η and leads to the restriction to discrete η:

2Lη = 2m1K + im2K
′. (13)

One obtains from (10) and (11) that

pn = k1/2 sn(K + (2n − 1)η) (14)

and from (8)

SR(α, β)(v)k,l = δk+1,lu
α(v + K − 2kη)τ−k,β + δk,l+1u

α(v + K + 2lη)τl,β

+ δk,1δl,1u
α(v + K)τ0,β + δk,Lδl,Luα(v + K + 2Lη)τL,β, (15)

for 1 < k � L, 1 < l � L and where

u+(v) = H(v) u−(v) = �(v) (16)

if

η = m1K/L. (17)

QR,72 is the matrix QR defined in (5) with SR given by (15).
It has been shown in [5] that QR based on (15) is singular if m1 is even and L is odd. In

the following subsection we show that an alternative construction leads for these η-values to
a regular QR-matrix.

1.2. Another Q-matrix

To obtain another solution ŜR of (8) and (9) we consider the possibility that the elements of
ŜR(α, β)m,n form cycles

ŜR(α, β)1,2, ŜR(α, β)2,3, . . . , ŜR(α, β)L−1,L, ŜR(α, β)L,1

and

ŜR(α, β)2,1, ŜR(α, β)3,2, . . . , ŜR(α, β)L,L−1, ŜR(α, β)1,L
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instead of imposing the condition that ŜR(α, β)m,n has two diagonal elements. In this case a
set of functions pn consistent with (10) and (11) is

pn = k1/2 sn(t + (2n − 1)η). (18)

From the condition that

ŜR(α, β)L,L+1 = ŜR(α, β)L,1 (19)

it follows that p1 and pL must have arguments which differ by 2η:

sn(t + (2L − 1)η) = sn(t + η − 2η). (20)

This is satisfied if

2Lη = 4mK + 2im2K
′. (21)

This condition differs from (13). The solution of equations (8) with the set of pn-functions
(18) as input is

ŜR(α, β)k,l = δk+1,lw
α(v − t − 2kη)τβ,−k + δk,l+1u

α(v + t + 2lη)τβ,l (22)

with uα defined in equation (16) and wα is given by

w+(v) = −H(v) w−(v) = �(v). (23)

Note that the first component of wα differs from u+ by a minus sign.
We consider only the case m2 = 0 in (21). Then

η = 2mK/L. (24)

We shall denote the QR-, QL- and Q-matrices derived from ŜR, ŜL by Q̂R, Q̂L and Q̂. We
distinguish the following cases.

(1) If L is odd the resulting Q̂-matrices cover exactly the set of discrete η-values which is
missing in the original solution (15)–(16). We note that for t = K this solution becomes
identical to case (15)–(16) with singular Q̂R . But for generic t (especially t = 0) Q̂R is
regular. It must be stressed, however, that the regularity has not been proved analytically
but numerically for sufficiently large systems to allow the occurrence of degenerate
eigenvalues of the transfer matrix T. See also appendix C of [1, 5].

(2) L is even but both L1 = L/2 and m are odd.
Then η = mK/L1 is that set of η-values for which solution (15)–(16) leads to regular
QR matrices. It turns out that in this case the Q̂R-matrix resulting from solution (22) is
singular.

(3) L and L/2 are even and m is odd.
In this case both solutions (15)–(16) and (22) give regular QR-matrices. But the matrices
ŜR(α, β) differ in size by a factor of 2.

The conclusion is that the two sets of Q-matrices (15)–(16) and (22) are complementary
in the sense that for η = mK/L and odd L what is missing in the first set is present in the
second and vice versa.

1.3. The matrix Q̂L

To get finally a Q-matrix which commutes with the transfer matrix T and satisfies equation (1)
Baxter introduced a second matrix QL. By transposing equation (6) and replacing v by −v

one obtains

QL(v)T (v) = [ρh(v − η)]NQL(v + 2η) + [ρh(v + η)]NQL(v − 2η) (25)
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with

QL(v) = Qt
R(−v) (26)

and

[QL(v)]α|β = Tr SL(α1, β1)SL(α2, β2) · · · SL(αN, βN). (27)

We perform this construction for the new Q̂R matrix. The local matrices ŜL are obtained
from (22)

ŜL(α, β)k,l(v) = ŜR(β, α)k,l(−v) (28)

ŜL(α, β)k,l = δk+1,lτα,−ku
β(v + t + 2kη) + δk,l+1τα,lw

β(v − t − 2lη). (29)

1.4. The relation QL(u)QR(v) = QL(v)QR(u)

To prove that the Q-matrix defined by

Q(v) = QR(v)Q−1
R (v0) (30)

commutes with the transfer matrix T Baxter shows in [1] that the relation

QL(v)QR(u) = QL(u)QR(v) (31)

holds. Then

Q(v) = Q−1
L (u)QL(v) = QR(v)Q−1

R (u) (32)

commutes with T (v). To prove (31) it is shown in [1] that SL(α, γ )m,n(u)SR(γ, β)m′n′(v) and
SL(α, γ )m,n(v)SR(γ, β)m′n′(u) are related by a similarity transformation:

SL(α, γ )m,n(u)SR(γ, β)m′n′(v) = Ym,m′;k,k′SL(α, γ )k,l(v)SR(γ, β)k′l′(u)Y−1
l,l′;n,n′ , (33)

with diagonal matrix Y,

Ym,m′;k,k′ = ym,m′δm,kδm′,k′ . (34)

To investigate whether the matrices Q̂R and Q̂L defined in (5), (22) and (27), (29) fulfil such
a relation we define a series of abbreviations. According to (22) we write

ŜR(α, β)m,n = �α
m,nτ̄

β
m,n, (35)

where

�α
m,n = εα

m,nf
α(vm,n) (36)

vm,n = δm−1,n(v + t + 2nη) + δm+1,n(v − t − 2mη) (37)

εα
m,n = δm−1,n − αδm+1,n α = ±1 (38)

τ̄ β
m,n = δm−1,nτβ,n + δm+1,nτβ,−m (39)

and f +(v) = H(v), f −(v) = �(v), δm+L,n = δm,n.
Equivalently, we write following (29):

ŜL(α, β)m,n = τ ′α
m,nχ

β
m,n, (40)

where

χβ
m,n = λβf β(um,n) (41)

um,n = δm−1,n(v − t − 2nη) + δm+1,n(v + t + 2mη) (42)
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λβ
m,n = −βδm−1,n + δm+1,n (43)

τ̄ ′α
m,n = δm−1,nτ

′
α,n + δm+1,nτ

′
α,−m. (44)

It follows then from (35) and (40)

ŜL(α, γ )m,n(u)ŜR(γ, β)m′n′(v) = τ ′α
m,nχ

γ
m,n(u)�

γ

m′,n′(v)τ
β

m′,n′ (45)

and from (36) and (41) one obtains

χγ
m,n(u)�

γ

m′,n′(v) = (δm+1,nδm′+1,n′ + δm−1,nδm′−1,n′)(�(um,n)�(vm′,n′) − H(um,n)H(vm′,n′))

+ (δm+1,nδm′−1,n′ + δm−1,nδm′+1,n′)(�(um,n)�(vm′,n′) + H(um,n)H(vm′,n′)),

(46)

with non-vanishing elements

χ
γ

m,m+1(u)�
γ

m′,m′+1(v) = �(um,m+1)�(vm′,m′+1) − H(um,m+1)H(vm′,m′+1) (47)

χ
γ

m,m−1(u)�
γ

m′,m′−1(v) = �(um,m−1)�(vm′,m′−1) − H(um,m−1)H(vm′,m′−1) (48)

χ
γ

m,m+1(u)�
γ

m′,m′−1(v) = �(um,m+1)�(vm′,m′−1) + H(um,m+1)H(vm′,m′−1) (49)

χ
γ

m,m−1(u)�
γ

m′,m′+1(v) = �(um,m−1)�(vm′,m′+1) + H(um,m−1)H(vm′,m′+1). (50)

The arguments are

um,m+1(u) − vm′,m′+1(v) = u − v + 2(m + m′)η + 2t

um,m−1(u) − vm′,m′−1(v) = u − v − 2(n + n′)η − 2t

um,m+1(u) − vm′,m′−1(v) = u − v + 2(m − m′ + 1)η

um,m−1(u) − vm′,m′+1(v) = u − v − 2(m − m′ − 1)η

um,m+1(u) + vm′,m′+1(v) = u + v + 2(m − m′)η

um,m−1(u) + vm′,m′−1(v) = u + v + 2(−n + n′)η

um,m+1(u) + vm′,m′−1(v) = u + v + 2(m + n′)η + 2t

um,m−1(u) + vm′,m′+1(v) = u + v − 2(n + m′)η − 2t.

(51)

To rewrite (47)–(50), we use

�(u)�(v) + H(u)H(v) = cf+(u + v)g+(u − v) (52)

�(u)�(v) − H(u)H(v) = cf−(u + v)g−(u − v) (53)

f+(u) = H((iK ′ + u)/2)H((iK ′ − u)/2)g+(u) = H1((iK
′ + u)/2)H1((iK

′ − u)/2) (54)

f−(u) = H1((iK
′ + u)/2)H1((iK

′ − u)/2)g−(u) = H((iK ′ + u)/2)H((iK ′ − u)/2). (55)

We need especially the following properties of g±:

g±(−u) = g±(u) g±(u + 4K) = g±(u). (56)

After insertion of (52)–(55) into (47)–(50) we get

χ
γ

m,m+1(u)�
γ

m′,m′+1(v) = cf−(u + v + 2(m − m′)η)g−(u − v + 2(m + m′)η + 2t) (57)

χ
γ

m,m−1(u)�
γ

m′,m′−1(v) = cf−(u + v + 2(m′ − m)η)g−(u − v − 2(n + n′)η − 2t) (58)
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χ
γ

m,m+1(u)�
γ

m′,m′−1(v) = cf+(u + v + 2(m + n′)η + 2t)g+(u − v + 2(m − m′ + 1)η) (59)

χ
γ

m,m−1(u)�
γ

m′,m′+1(v) = cf+(u + v − 2(n + m′)η − 2t)η)g+(u − v − 2(m − m′ − 1)η). (60)

It now remains to show that a L2 × L2 matrix Y exists such that equation (33) is satisfied for
ŜR and ŜL. As τ and τ ′ occurring in the definition of ŜR and ŜL are free parameters we obtain
from (33)

χγ
m,n(u)�

γ

m′,n′(v) = Ym,m′;k,k′χγ (v)k,l�
γ (u)k′,l′Y

−1
l,l′;n,n′ . (61)

Taking tentatively Y to be diagonal

Ym,m′;k,k′ = ym,m′δm,kδm′,k′ , (62)

we get

χγ
m,n(u)�

γ

m′,n′(v) = ym,m′

yn,n′
χγ

m,n(v)�
γ

m′,n′(u) (63)

and it follows from (57)–(60)

ym+1,m′+1 = ym,m′
g−(u − v − 2(m + m′)η − 2t)

g−(u − v + 2(m + m′)η + 2t)
(64)

ym+1,m′−1 = ym,m′
g+(u − v − 2(m − m′ + 1)η)

g+(u − v + 2(m − m′ + 1)η))
. (65)

To prove that a matrix Y can be found such that (61) is satisfied we have to show that the set
of equations (64)–(65) is free from contradictions on the torus of size L × L where

ym+L,n+L = ym,n. (66)

It follows from equation (64) that

ym+L,n+L = g−(u − v − 2(m + n)η − 4(L − 1)η − 2t)

g−(u − v + 2(m + n)η + 4(L − 1)η + 2t)

× g−(u − v − 2(m + n)η − 4(L − 2)η − 2t)

g−(u − v + 2(m + n)η + 4(L − 2)η + 2t)
· · ·

g−(u − v − 2(m + n)η − 2t)

g−(u − v + 2(m + n)η + 2t)
ym,n. (67)

The factor g−(u − v − 2(m + n)η + 4r2η − 2t) in the numerator cancels the factor
g−(u − v + 2(m + n)η + 4r1η + 2t) in the denominator if t = 0 and

−2(m + n)η − 4r2η = 2(m + n)η + 4r1η + 4kK (68)

for arbitrary k and if we set k = 2m1k1 for integer k1:

r2 = k1L − m − n − r1. (69)

It follows that for each factor in the numerator of equation (67) there is a factor in the
denominator against which it cancels. Similarly we derive from equation (65) that

ym,n = ym−L,n+L. (70)

We have shown that all ym,n can be determined from a single element (e.g. y1,1) consistently
if t = 0. This conclusion cannot be drawn for t �= 0. A numerical test of (31) shows that it is
not satisfied for t �= 0, and therefore no similarity transformation (33) exists for t �= 0.

We summarize what has been found in this section.
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We have attained our goal to construct a Q-matrix which exists for η = 2mK/L for
odd L:

The Q̂R-matrix defined in equation (5) with local matrices ŜR defined in (22) is
regular.

If the parameter t is set to zero relation (31) is satisfied.

Then Q̂(v) = Q̂R(v)Q̂
−1
R (v0) satisfies equation (1) and commutes with the transfer

matrix T.

2. Quasiperiodicity properties of Q

It is easily seen that Q72,R(v) and Q̂R(v, t) satisfy

Q̂72,R(v + 2K) = SQ̂72,R(v) Q̂R(v + 2K, t) = SQ̂R(v, t). (71)

It is of great importance to find the quasiperiodicity properties of the Q-matrices in the complex
v-plane. We do that in this section for Q72,R(v) and Q̂R(v, t = 0). It is well known that the
quasiperiod of Q73 is iK′. See [9] for details. We shall present plausibility arguments for the
statement that Q72,R as well as Q̂ are singular matrices if their quasiperiod is iK′.

2.1. Quasiperiodicity properties of Q72

We get from equations (15), (A.4), (A.5) and from

η = m1K/L (72)

the relations

SR(±, β)k,k+1(v + iK′) = f (v) exp(+iπkη/K)SR(∓, β)(v)k,k+1

SR(±, β)k+1,k(v + iK′) = f (v) exp(−iπkη/K)SR(∓, β)(v)k+1,k

SR(±, β)1,1(v + iK′) = f (v)SR(∓, β)(v)1,1

SR(±, β)L,L(v + iK′) = (−1)m1f (v)SR(∓, β)(v)L,L,

(73)

where

f (v) = q−1/4 exp

(
− iπv

2K

)
. (74)

The similarity transformation

S̄(α, β)i,l = Ai,j Ŝ(α, β)j,kA
−1
k,l , (75)

with

Ak,l = δk,l exp

(
iπ

2K
(k − 1)kη

)
a1 (76)

leads to

S̃R(±, β)k,k+1(v + iK′) = f (v)SR(∓, β)(v)k,k+1

S̃R(±, β)k+1,k(v + iK′) = f (v)SR(∓, β)(v)k+1,k

S̃R(±, β)1,1(v + iK′) = f (v)SR(∓, β)(v)1,1

S̃R(±, β)L,L(v + iK′) = (−1)m1f (v)SR(∓, β)(v)L,L.

(77)

If m1 is even it follows that

S̃R(α, β)k,l(v + iK′) = f (v)R(α, γ )SR(γ, β)(v)k,l , (78)
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where R is defined in equation (4) and

QR,72(v + iK′) = f (v)NRQR,72(v). (79)

However, it is well known [5] that for even m1 QR,72(v) is singular and consequently relation
(79) cannot be upgraded from QR,72 to Q72. It is shown in [5] that instead of (79) the following
relation holds:

QR,72(v + 2iK′) = q−N exp(−iNπv/K)QR,72(v), (80)

which is correct for all η = m1K/L. Provided m1 is odd it follows

Q72(v + 2iK′) = q−N exp(−iNπv/K)Q72(v). (81)

2.2. Quasiperiodicity properties of Q̂

We obtain from equation (22)

ŜR(±, β)(v + iK′)k,k+1 = f (v)(−i) exp(+iπkη/K)ŜR(∓, β)(v)k,k+1 (82)

ŜR(±, β)(v + iK′)k+1,k = f (v)(+i) exp(−iπkη/K)ŜR(∓, β)(v)k+1,k. (83)

Perform the similarity transformation

S̄(α, β)i,l = Ai,j Ŝ(α, β)j,kA
−1
k,l , (84)

with

Ak,l = δk,l(−i)k−1 exp

(
iπ

2K
(k − 1)kη

)
a1. (85)

Then for k < L,

S̄R(±, β)(v + iK′)k,k+1 = f (v)ŜR(∓, β)(v)k,k+1 (86)

S̄R(±, β)(v + iK′)k+1,k = f (v)ŜR(∓, β)(v)k+1,k (87)

and for k = L,

S̄R(±, β)(v + iK′)L,1 = f (v) exp

[
+iπ

2
((2m1 − 1)L + 2m1)

]
ŜR(∓, β)(v)k,k+1 (88)

S̄R(±, β)(v + iK′)1,L = f (v) exp

[−iπ

2
((2m1 − 1)L + 2m1)

]
ŜR(∓, β)(v)k+1,k. (89)

We find that if

exp

[−iπ

2
((2m1 − 1)L + 2m1)

]
= 1, (90)

Q̂R satisfies the relation

Q̂R(v + iK′) = q−N/4 exp

(
− iπNv

2K

)
RQ̂R(v) (91)

which is the same as (79) for QR,72. This happens only for

(I) even m1 if L = 4× integer
(II) odd m1 if L = 2× odd integer.
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These are exactly those cases in which Q̂R is singular. Like equation (79) equation (91) does
not give the corresponding relation for the Q-matrix Q̂.

In the following paragraph Q denotes either Q72 or Q̂.

We note that if the relation

Q(v + iK′) = q−N/4 exp

(
− iπNv

2K

)
RQ(v) (92)

were correct then it would follow that

q(v + iK′)|q〉 = q−N/4 exp

(
− iπNv

2K

)
q(v)R|q〉, (93)

where |q〉 denotes an arbitrary eigenvector of Q(v) and q(v) is its eigenvalue.

In other words: all eigenvectors of Q̂(v) would be eigenvectors of R. It is however
well known [5] that the eigenvectors of Q72(v) which are degenerate eigenvectors of
the transfer matrix T are generally not eigenvectors of R.

Equations (79) and (91) allow a coherent explanation of the fact that QR is singular for
one set of η values and regular for another. Under the assumption that if Q exists there are
eigenstates of Q which are not eigenstates of R,QR cannot be regular if in case of Q72,m1

is even or in case of Q̂ (90) is satisfied. This also explains naturally the observation that for
fixed L and sufficiently small NQ−1

R exists always as then all states are singlets and (79) and
(91) do not lead to contradictions when upgraded from QR to Q.

Using the method used in this section it can easily be shown that always

Q̂R(v + 2iK ′) = q−N exp(−iNπv/K)Q̂R(v) (94)

and consequently if Q̂−1
R exists

Q̂(v + 2iK ′) = q−N exp(−iNπv/K)Q̂(v). (95)

3. The properties of Q̂ for t = 0

It follows from (95) that as shown for Q72 in [5], Q̂(v) may be written as

Q̂(v) = K̂(q; vk) exp(i(nB − ν)πv/2K)

nB∏
j=1

h
(
v − vB

j

)

×
nL∏

j=1

H(v − iwj)H(v − iwj − 2η) · · · H(v − iwj − 2(L − 1)η) (96)

2nB + LnL = N. (97)

nB is the number of Bethe roots vB
k and nL is the number of exact Q-strings of length L. The

sum rules (2.16)–(2.21) of [5] are also true for Q̂(v).
From (71) and

Q̂L(v)Q̂R(u) = Q̂L(u)Q̂R(v) (98)

follows that

[S, Q̂(v)] = 0. (99)

Finally, we find numerically that the functional relation (3) which was originally conjectured
in [5] is also satisfied for Q̂(v).
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4. The matrix Q̂(v, t)

We have shown that Q̂R(v) satisfies the T − Q̂R relation and found that it is not singular.
But the proof of relation (31) failed for parameter t �= 0. One finds numerically that (31)
is in fact violated for systems large enough to allow degenerate eigenvalues of the transfer
matrix. Therefore, the question arises whether Q̂R(v, t) is useful at all. Surprisingly, we find
numerically that for η = 2mK/L and odd L despite

Q̂
−1
L (v0, t)Q̂L(v, t) �= Q̂R(v, t)Q̂

−1
R (v0, t) (100)

both matrices

Q̂(L)(v, t) = Q̂
−1
L (v0, t)Q̂L(v, t) and Q̂(R)(v, t) = Q̂R(v, t)Q̂

−1
R (v0, t) (101)

commute with the transfer matrix T. Furthermore, we find that in the cases studied Q̂(L)(v, t)

and Q̂(R)(v, t) have the same eigenvalues. This means that there exists a matrix A with
Q̂(L)(v, t) = AQ̂(R)(v, t)A−1 and consequently instead of (31)

Q̂L(v)AQ̂R(u) = Q̂L(u)AQ̂R(v) (102)

should hold. A consequence of (100) is that

[Q̂(R)(v1, t), Q̂
(R)(v2, t)] �= 0 (103)

as one needs (31) to prove that Q-matrices with different arguments commute (see 9.48.41 in
[9]). We find that like Q72 the matrix Q̂ does not commute with R:

[R, Q̂(v, t)] �= 0, (104)

but unlike Q72 as a consequence of (100) does also not commute with S for t �= 0:

[S, Q̂(v, t)] �= 0. (105)

This is possible because the degenerate subspaces of T have elements with both eigenvalues
ν ′ = 0, 1 of S if η = 2m1K/L and L is odd.

These properties of Q̂(L)(v, t) and Q̂(R)(v, t) imply that they act as non-Abelian symmetry
operators in all degenerate subspaces of the set of eigenvectors of T. We finally mention
that whereas the six-vertex limit of QR,72 does not exist it exists for Q̂R . The limit of
Q̂R(v, t = iK ′/2) for elliptic nome q → 0 is well defined. Using

lim
q→0

H(u ± iK ′/2) = exp(∓i(u − π/2)) lim
q→0

�(u ± iK ′/2) = 1, (106)

one gets a regular limiting Q̂R-matrix. It has been checked numerically that the resulting
Q̂-matrix commutes with T6v .
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Appendix

The transfer matrix of the eight-vertex model is

T (v)|µ,ν = Tr W8(µ1, ν1)W8(µ2, ν2) · · · W8(µN, νN), (A.1)
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where in the conventions of (6.2) of [1]

W8(1, 1)|1,1 = W8(−1,−1)|−1,−1 = a = ρ�(2η)�(v − η)H(v + η)

W8(−1,−1)|1,1 = W8(1, 1)|−1,−1 = b = ρ�(2η)H(v − η)�(v + η)

W8(−1, 1)|1,−1 = W8(1,−1)|−1,1 = c = ρH(2η)�(v − η)�(v + η)

W8(1,−1)|1,−1 = W8(−1, 1)|−1,1 = d = ρH(2η)H(v − η)H(v + η).

(A.2)

Relations used in the text. See e.g. [10]

sn(u − v) = sn(u) cn(v) dn(v) − sn(v) cn(u) dn(u)

1 − k2 sn2(u) sn2(v)
(A.3)

H(v + iK ′) = iq−1/4 exp

(
− iπv

2K

)
�(v) (A.4)

�(v + iK ′) = iq−1/4 exp

(
− iπv

2K

)
H(v). (A.5)

References

[1] Baxter R J 1972 Partition function of the eight vertex model Ann. Phys. 70 193
[2] Baxter R J 1973 Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain: I.

Some fundamental eigenvectors Ann. Phys. 76 1
[3] Baxter R J 1973 Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain: II.

Equivalence to a generalized ice-type lattice model Ann. Phys. 76 25
[4] Baxter R J 1973 Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain: III.

Eigenvectors of the transfer matrix and the Hamiltonian Ann. Phys. 76 48
[5] Fabricius K and McCoy B M 2003 New developments in the eight vertex model J. Stat. Phys. 111 323–37
[6] Fabricius K and McCoy B M 2004 Functional equations and fusion matrices for the eight-vertex model Publ.

RIMS 40 905
[7] Fabricius K and McCoy B 2002 Evaluation parameters and Bethe roots for the six-vertex model at roots of

unity MathPhys Odyssey 2001 (Progress in Mathematical Physics 23) ed M Kashiwara and T Miwa (Boston:
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